
17.12.2018 Map.S

https://caml.inria.fr/pub/docs/manual-ocaml/libref/Map.S.html 1/4

Module type Map.S
module type S = sig .. end

Output signature of the functor Map.Make.

type key

The type of the map keys.

type +'a t

The type of maps from type key to type 'a.

val empty : 'a t

The empty map.

val is_empty : 'a t -> bool

Test whether a map is empty or not.

val mem : key -> 'a t -> bool

mem x m returns true if m contains a binding for x, and false otherwise.

val add : key -> 'a -> 'a t -> 'a t

add x y m returns a map containing the same bindings as m, plus a binding of x
to y. If x was already bound in m to a value that is physically equal to y, m is
returned unchanged (the result of the function is then physically equal to m).
Otherwise, the previous binding of x in m disappears.
Before 4.03 Physical equality was not ensured.

val update : key -> ('a option -> 'a option) -> 'a t -> 'a t

update x f m returns a map containing the same bindings as m, except for the
binding of x. Depending on the value of y where y is f (find_opt x m), the
binding of x is added, removed or updated. If y is None, the binding is removed
if it exists; otherwise, if y is Some z then x is associated to z in the resulting
map. If x was already bound in m to a value that is physically equal to z, m is
returned unchanged (the result of the function is then physically equal to m).
Since 4.06.0

val singleton : key -> 'a -> 'a t

singleton x y returns the one-element map that contains a binding y for x.
Since 3.12.0

val remove : key -> 'a t -> 'a t

remove x m returns a map containing the same bindings as m, except for x which
is unbound in the returned map. If x was not in m, m is returned unchanged (the
result of the function is then physically equal to m).
Before 4.03 Physical equality was not ensured.

val merge : (key -> 'a option -> 'b option -> 'c option) ->
 'a t -> 'b t -> 'c t

merge f m1 m2 computes a map whose keys is a subset of keys of m1 and of m2.
The presence of each such binding, and the corresponding value, is determined
with the function f. In terms of the find_opt operation, we have
find_opt x (merge f m1 m2) = f (find_opt x m1) (find_opt x m2) for any
key x, provided that f None None = None.
Since 3.12.0

val union : (key -> 'a -> 'a -> 'a option) ->
 'a t -> 'a t -> 'a t

Previous Up

https://caml.inria.fr/pub/docs/manual-ocaml/libref/type_Map.S.html
https://caml.inria.fr/pub/docs/manual-ocaml/libref/Map.S.html
https://caml.inria.fr/pub/docs/manual-ocaml/libref/Map.Make.html
https://caml.inria.fr/pub/docs/manual-ocaml/libref/Map.OrderedType.html
https://caml.inria.fr/pub/docs/manual-ocaml/libref/Map.html

17.12.2018 Map.S

https://caml.inria.fr/pub/docs/manual-ocaml/libref/Map.S.html 2/4

union f m1 m2 computes a map whose keys is the union of keys of m1 and of m2.
When the same binding is defined in both arguments, the function f is used to
combine them. This is a special case of merge: union f m1 m2 is equivalent to
merge f' m1 m2, where

f' None None = None
f' (Some v) None = Some v
f' None (Some v) = Some v
f' (Some v1) (Some v2) = f v1 v2

Since 4.03.0

val compare : ('a -> 'a -> int) -> 'a t -> 'a t -> int

Total ordering between maps. The first argument is a total ordering used to
compare data associated with equal keys in the two maps.

val equal : ('a -> 'a -> bool) -> 'a t -> 'a t -> bool

equal cmp m1 m2 tests whether the maps m1 and m2 are equal, that is, contain
equal keys and associate them with equal data. cmp is the equality predicate
used to compare the data associated with the keys.

val iter : (key -> 'a -> unit) -> 'a t -> unit

iter f m applies f to all bindings in map m. f receives the key as first argument,
and the associated value as second argument. The bindings are passed to f in
increasing order with respect to the ordering over the type of the keys.

val fold : (key -> 'a -> 'b -> 'b) -> 'a t -> 'b -> 'b

fold f m a computes (f kN dN ... (f k1 d1 a)...), where k1 ... kN are the
keys of all bindings in m (in increasing order), and d1 ... dN are the associated
data.

val for_all : (key -> 'a -> bool) -> 'a t -> bool

for_all p m checks if all the bindings of the map satisfy the predicate p.
Since 3.12.0

val exists : (key -> 'a -> bool) -> 'a t -> bool

exists p m checks if at least one binding of the map satisfies the predicate p.
Since 3.12.0

val filter : (key -> 'a -> bool) -> 'a t -> 'a t

filter p m returns the map with all the bindings in m that satisfy predicate p. If
p satisfies every binding in m, m is returned unchanged (the result of the function
is then physically equal to m)
Before 4.03 Physical equality was not ensured.
Since 3.12.0

val partition : (key -> 'a -> bool) -> 'a t -> 'a t * 'a t

partition p m returns a pair of maps (m1, m2), where m1 contains all the
bindings of s that satisfy the predicate p, and m2 is the map with all the bindings
of s that do not satisfy p.
Since 3.12.0

val cardinal : 'a t -> int

Return the number of bindings of a map.
Since 3.12.0

val bindings : 'a t -> (key * 'a) list

Return the list of all bindings of the given map. The returned list is sorted in
increasing order with respect to the ordering Ord.compare, where Ord is the
argument given to Map.Make.

https://caml.inria.fr/pub/docs/manual-ocaml/libref/Map.Make.html

17.12.2018 Map.S

https://caml.inria.fr/pub/docs/manual-ocaml/libref/Map.S.html 3/4

Since 3.12.0

val min_binding : 'a t -> key * 'a

Return the smallest binding of the given map (with respect to the Ord.compare
ordering), or raise Not_found if the map is empty.
Since 3.12.0

val min_binding_opt : 'a t -> (key * 'a) option

Return the smallest binding of the given map (with respect to the Ord.compare
ordering), or None if the map is empty.
Since 4.05

val max_binding : 'a t -> key * 'a

Same as Map.S.min_binding, but returns the largest binding of the given map.
Since 3.12.0

val max_binding_opt : 'a t -> (key * 'a) option

Same as Map.S.min_binding_opt, but returns the largest binding of the given
map.
Since 4.05

val choose : 'a t -> key * 'a

Return one binding of the given map, or raise Not_found if the map is empty.
Which binding is chosen is unspecified, but equal bindings will be chosen for
equal maps.
Since 3.12.0

val choose_opt : 'a t -> (key * 'a) option

Return one binding of the given map, or None if the map is empty. Which
binding is chosen is unspecified, but equal bindings will be chosen for equal
maps.
Since 4.05

val split : key -> 'a t -> 'a t * 'a option * 'a t

split x m returns a triple (l, data, r), where l is the map with all the
bindings of m whose key is strictly less than x; r is the map with all the bindings
of m whose key is strictly greater than x; data is None if m contains no binding for
x, or Some v if m binds v to x.
Since 3.12.0

val find : key -> 'a t -> 'a

find x m returns the current binding of x in m, or raises Not_found if no such
binding exists.

val find_opt : key -> 'a t -> 'a option

find_opt x m returns Some v if the current binding of x in m is v, or None if no
such binding exists.
Since 4.05

val find_first : (key -> bool) -> 'a t -> key * 'a

find_first f m, where f is a monotonically increasing function, returns the
binding of m with the lowest key k such that f k, or raises Not_found if no such
key exists.

For example, find_first (fun k -> Ord.compare k x >= 0) m will return the
first binding k, v of m where Ord.compare k x >= 0 (intuitively: k >= x), or
raise Not_found if x is greater than any element of m.

Since 4.05

val find_first_opt : (key -> bool) -> 'a t -> (key * 'a) option

17.12.2018 Map.S

https://caml.inria.fr/pub/docs/manual-ocaml/libref/Map.S.html 4/4

find_first_opt f m, where f is a monotonically increasing function, returns an
option containing the binding of m with the lowest key k such that f k, or None if
no such key exists.
Since 4.05

val find_last : (key -> bool) -> 'a t -> key * 'a

find_last f m, where f is a monotonically decreasing function, returns the
binding of m with the highest key k such that f k, or raises Not_found if no such
key exists.
Since 4.05

val find_last_opt : (key -> bool) -> 'a t -> (key * 'a) option

find_last_opt f m, where f is a monotonically decreasing function, returns an
option containing the binding of m with the highest key k such that f k, or None
if no such key exists.
Since 4.05

val map : ('a -> 'b) -> 'a t -> 'b t

map f m returns a map with same domain as m, where the associated value a of
all bindings of m has been replaced by the result of the application of f to a. The
bindings are passed to f in increasing order with respect to the ordering over the
type of the keys.

val mapi : (key -> 'a -> 'b) -> 'a t -> 'b t

Same as Map.S.map, but the function receives as arguments both the key and the
associated value for each binding of the map.

Iterators

val to_seq : 'a t -> (key * 'a) Seq.t

Iterate on the whole map, in ascending order
Since 4.07

val to_seq_from : key -> 'a t -> (key * 'a) Seq.t

to_seq_from k m iterates on a subset of the bindings of m, in ascending order,
from key k or above.
Since 4.07

val add_seq : (key * 'a) Seq.t -> 'a t -> 'a t

Add the given bindings to the map, in order.
Since 4.07

val of_seq : (key * 'a) Seq.t -> 'a t

Build a map from the given bindings
Since 4.07

https://caml.inria.fr/pub/docs/manual-ocaml/libref/Seq.html#TYPEt
https://caml.inria.fr/pub/docs/manual-ocaml/libref/Seq.html#TYPEt
https://caml.inria.fr/pub/docs/manual-ocaml/libref/Seq.html#TYPEt
https://caml.inria.fr/pub/docs/manual-ocaml/libref/Seq.html#TYPEt

