17.12.2018

Set.S

Previous Up Module type Set-S

module type S = sig .. end

Output signature of the functor Set.Make.

type elt

The type of the set elements.

type t

val

val

val

val

val

val

val

val

val

val

val

val

val

The type of sets.

empty : t
The empty set.

is_empty : t -> bool
Test whether a set is empty or not.

mem : elt -> t -> bool
mem x s tests whether x belongs to the set s.

add : elt -> t -> t

add x s returns a set containing all elements of s, plus x. If x was already in s, s
is returned unchanged (the result of the function is then physically equal to s).
Before 4.03 Physical equality was not ensured.

singleton : elt -> t
singleton x returns the one-element set containing only x.

remove : elt -> t -> t

remove x s returns a set containing all elements of s, except x. If x was not in s,
s 1s returned unchanged (the result of the function is then physically equal to s).
Before 4.03 Physical equality was not ensured.

union : t -> t -> t
Set union.

inter : t -> t -> t
Set intersection.

diff : t ->t -> t
Set difference.

compare : t -> t -> int
Total ordering between sets. Can be used as the ordering function for doing sets
of sets.

equal : t -> t -> bool

equal s1 s2 tests whether the sets s1 and s2 are equal, that is, contain equal
elements.

subset : t -> t -> bool
subset s1 s2 tests whether the set s1 is a subset of the set s2.

iter : (elt -> unit) -> t -> unit
iter f sapplies f in turn to all elements of s. The elements of s are presented
to f in increasing order with respect to the ordering over the type of the
elements.

https://caml.inria.fr/pub/docs/manual-ocaml/libref/Set.S.html 1/4


https://caml.inria.fr/pub/docs/manual-ocaml/libref/type_Set.S.html
https://caml.inria.fr/pub/docs/manual-ocaml/libref/Set.S.html
https://caml.inria.fr/pub/docs/manual-ocaml/libref/Set.Make.html
https://caml.inria.fr/pub/docs/manual-ocaml/libref/Set.OrderedType.html
https://caml.inria.fr/pub/docs/manual-ocaml/libref/Set.html

17.12.2018

val

val

val

val

val

val

val

val

val

val

val

val

val

Set.S
map : (elt -> elt) -> t -> t
map f s is the set whose elements are £ ao,f al... f
aN, where ag,a1...aN are the elements of s.

The elements are passed to f in increasing order with respect to the ordering
over the type of the elements.

If no element of s is changed by f, s is returned unchanged. (If each output of £
is physically equal to its input, the returned set is physically equal to s.)

Since 4.04.0

fold : (elt -> 'a -> 'a) ->t -> 'a -> 'a
fold f s acomputes (f xN ... (f x2 (f x1 a))...), where x1 ... xN are the
elements of s, in increasing order.

for_all : (elt -> bool) -> t -> bool
for_all p s checks if all elements of the set satisfy the predicate p.

exists : (elt -> bool) -> t -> bool
exists p s checks if at least one element of the set satisfies the predicate p.

filter : (elt -> bool) -> t -> t

filter p s returns the set of all elements in s that satisfy predicate p. If p
satisfies every element in s, s is returned unchanged (the result of the function
is then physically equal to s).

Before 4.03 Physical equality was not ensured.

partition : (elt -> bool) -> t -> t * t
partition p s returns a pair of sets (s1, s2), where s1 is the set of all the
elements of s that satisfy the predicate p, and s2 is the set of all the elements of
s that do not satisfy p.

cardinal : t -> int
Return the number of elements of a set.

elements : t -> elt list

Return the list of all elements of the given set. The returned list is sorted in
increasing order with respect to the ordering ord. compare, where ord is the
argument given to Set.Make.

min_elt : t -> elt
Return the smallest element of the given set (with respect to the ord. compare
ordering), or raise Not_found if the set is empty.

min_elt opt : t -> elt option
Return the smallest element of the given set (with respect to the ord. compare

ordering), or None if the set is empty.
Since 4.05

max_elt : t -> elt
Same as Set.S.min_elt, but returns the largest element of the given set.

max_elt _opt : t -> elt option
Same as Set.S.min_elt_opt, but returns the largest element of the given set.
Since 4.05

choose : t -> elt
Return one element of the given set, or raise Not_found if the set is empty.

Which element is chosen is unspecified, but equal elements will be chosen for
equal sets.

https://caml.inria.fr/pub/docs/manual-ocaml/libref/Set.S.html

2/4


https://caml.inria.fr/pub/docs/manual-ocaml/libref/Set.Make.html

17.12.2018 Set.S
val choose_opt : t -> elt option

Return one element of the given set, or None if the set is empty. Which element
is chosen is unspecified, but equal elements will be chosen for equal sets.
Since 4.05

val split : elt -> t -> t * bool * t
split x sreturns a triple (1, present, r), where 1 is the set of elements of s
that are strictly less than x; r is the set of elements of s that are strictly greater
than x; present is false if s contains no element equal to x, or true if s contains
an element equal to x.

val find : elt -> t -> elt

find x s returns the element of s equal to x (according to Ord. compare), or raise
Not_found if no such element exists.
Since 4.01.0

val find_opt : elt -> t -> elt option
find_opt x s returns the element of s equal to x (according to ord. compare), or

None if no such element exists.
Since 4.05

val find_first : (elt -> bool) -> t -> elt

find_first f s, where f is a monotonically increasing function, returns the
lowest element e of s such that £ e, or raises Not_found if no such element
exists.

For example, find_first (fun e -> Ord.compare e x >= 0) s will return the
first element e of s where ord.compare e x >= o (intuitively: e >= x), or raise
Not_found if x is greater than any element of s.

Since 4.05

val find_first_opt : (elt -> bool) -> t -> elt option
find_first_opt f s, where f is a monotonically increasing function, returns an
option containing the lowest element e of s such that f e, or None if no such

element exists.
Since 4.05

val find_last : (elt -> bool) -> t -> elt

find_last f s, where f is a monotonically decreasing function, returns the
highest element e of s such that f e, or raises Not_found if no such element
exists.

Since 4.05

val find_last_opt : (elt -> bool) -> t -> elt option
find_last_opt f s, where f is a monotonically decreasing function, returns an
option containing the highest element e of s such that f e, or None if no such

element exists.
Since 4.05

val of_list : elt list -> t

of_list 1 creates a set from a list of elements. This is usually more efficient
than folding add over the list, except perhaps for lists with many duplicated
elements.
Since 4.02.0

Iterators

val to_seq_from : elt -> t -> elt Seq.t

to_seq_from x s iterates on a subset of the elements of s in ascending order,
from x or above.

https://caml.inria.fr/pub/docs/manual-ocaml/libref/Set.S.html

3/4


https://caml.inria.fr/pub/docs/manual-ocaml/libref/Seq.html#TYPEt

17.12.2018 Set.S
Since 4.07

val to_seq : t -> elt Seq.t

Iterate on the whole set, in ascending order
Since 4.07

val add_seq : elt Seq.t -> t -> t

Add the given elements to the set, in order.
Since 4.07

val of_seq : elt Seq.t -> t

Build a set from the given bindings
Since 4.07

https://caml.inria.fr/pub/docs/manual-ocaml/libref/Set.S.html

4/4


https://caml.inria.fr/pub/docs/manual-ocaml/libref/Seq.html#TYPEt
https://caml.inria.fr/pub/docs/manual-ocaml/libref/Seq.html#TYPEt
https://caml.inria.fr/pub/docs/manual-ocaml/libref/Seq.html#TYPEt

