
17.12.2018 List

https://caml.inria.fr/pub/docs/manual-ocaml/libref/List.html 1/5

Module List
module List: sig .. end

List operations.

Some functions are flagged as not tail-recursive. A tail-recursive function uses
constant stack space, while a non-tail-recursive function uses stack space
proportional to the length of its list argument, which can be a problem with very
long lists. When the function takes several list arguments, an approximate
formula giving stack usage (in some unspecified constant unit) is shown in
parentheses.

The above considerations can usually be ignored if your lists are not longer than
about 10000 elements.

val length : 'a list -> int

Return the length (number of elements) of the given list.

val compare_lengths : 'a list -> 'b list -> int

Compare the lengths of two lists. compare_lengths l1 l2 is equivalent to
compare (length l1) (length l2), except that the computation stops after
itering on the shortest list.
Since 4.05.0

val compare_length_with : 'a list -> int -> int

Compare the length of a list to an integer. compare_length_with l n is
equivalent to compare (length l) n, except that the computation stops after at
most n iterations on the list.
Since 4.05.0

val cons : 'a -> 'a list -> 'a list

cons x xs is x :: xs
Since 4.03.0

val hd : 'a list -> 'a

Return the first element of the given list. Raise Failure "hd" if the list is empty.

val tl : 'a list -> 'a list

Return the given list without its first element. Raise Failure "tl" if the list is
empty.

val nth : 'a list -> int -> 'a

Return the n-th element of the given list. The first element (head of the list) is at
position 0. Raise Failure "nth" if the list is too short. Raise
Invalid_argument "List.nth" if n is negative.

val nth_opt : 'a list -> int -> 'a option

Return the n-th element of the given list. The first element (head of the list) is at
position 0. Return None if the list is too short. Raise
Invalid_argument "List.nth" if n is negative.
Since 4.05

val rev : 'a list -> 'a list

List reversal.

val init : int -> (int -> 'a) -> 'a list

List.init len f is f 0; f 1; ...; f (len-1), evaluated left to right.

Previous  Up  Next

https://caml.inria.fr/pub/docs/manual-ocaml/libref/type_List.html
https://caml.inria.fr/pub/docs/manual-ocaml/libref/List.html
https://caml.inria.fr/pub/docs/manual-ocaml/libref/Lexing.html
https://caml.inria.fr/pub/docs/manual-ocaml/libref/index.html
https://caml.inria.fr/pub/docs/manual-ocaml/libref/ListLabels.html


17.12.2018 List

https://caml.inria.fr/pub/docs/manual-ocaml/libref/List.html 2/5

Since 4.06.0
Raises Invalid_argument if len < 0.

val append : 'a list -> 'a list -> 'a list

Concatenate two lists. Same as the infix operator @. Not tail-recursive (length of
the first argument).

val rev_append : 'a list -> 'a list -> 'a list

List.rev_append l1 l2 reverses l1 and concatenates it to l2. This is equivalent
to List.rev l1 @ l2, but rev_append is tail-recursive and more efficient.

val concat : 'a list list -> 'a list

Concatenate a list of lists. The elements of the argument are all concatenated
together (in the same order) to give the result. Not tail-recursive (length of the
argument + length of the longest sub-list).

val flatten : 'a list list -> 'a list

An alias for concat.

Iterators
val iter : ('a -> unit) -> 'a list -> unit

List.iter f [a1; ...; an] applies function f in turn to a1; ...; an. It is
equivalent to begin f a1; f a2; ...; f an; () end.

val iteri : (int -> 'a -> unit) -> 'a list -> unit

Same as List.iter, but the function is applied to the index of the element as
first argument (counting from 0), and the element itself as second argument.
Since 4.00.0

val map : ('a -> 'b) -> 'a list -> 'b list

List.map f [a1; ...; an] applies function f to a1, ..., an, and builds the list
[f a1; ...; f an] with the results returned by f. Not tail-recursive.

val mapi : (int -> 'a -> 'b) -> 'a list -> 'b list

Same as List.map, but the function is applied to the index of the element as first
argument (counting from 0), and the element itself as second argument. Not
tail-recursive.
Since 4.00.0

val rev_map : ('a -> 'b) -> 'a list -> 'b list

List.rev_map f l gives the same result as List.rev (List.map f l), but is tail-
recursive and more efficient.

val fold_left : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a

List.fold_left f a [b1; ...; bn] is f (... (f (f a b1) b2) ...) bn.

val fold_right : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b

List.fold_right f [a1; ...; an] b is f a1 (f a2 (... (f an b) ...)). Not
tail-recursive.

Iterators on two lists
val iter2 : ('a -> 'b -> unit) -> 'a list -> 'b list -> unit

List.iter2 f [a1; ...; an] [b1; ...; bn] calls in turn
f a1 b1; ...; f an bn. Raise Invalid_argument if the two lists are determined
to have different lengths.



17.12.2018 List

https://caml.inria.fr/pub/docs/manual-ocaml/libref/List.html 3/5

val map2 : ('a -> 'b -> 'c) -> 'a list -> 'b list -> 'c list

List.map2 f [a1; ...; an] [b1; ...; bn] is [f a1 b1; ...; f an bn]. Raise
Invalid_argument if the two lists are determined to have different lengths. Not
tail-recursive.

val rev_map2 : ('a -> 'b -> 'c) -> 'a list -> 'b list -> 'c list

List.rev_map2 f l1 l2 gives the same result as List.rev (List.map2 f l1 l2),
but is tail-recursive and more efficient.

val fold_left2 : ('a -> 'b -> 'c -> 'a) -> 'a -> 'b list -> 'c list -> 'a

List.fold_left2 f a [b1; ...; bn] [c1; ...; cn] is
f (... (f (f a b1 c1) b2 c2) ...) bn cn. Raise Invalid_argument if the two
lists are determined to have different lengths.

val fold_right2 : ('a -> 'b -> 'c -> 'c) -> 'a list -> 'b list -> 'c -> 'c

List.fold_right2 f [a1; ...; an] [b1; ...; bn] c is
f a1 b1 (f a2 b2 (... (f an bn c) ...)). Raise Invalid_argument if the two
lists are determined to have different lengths. Not tail-recursive.

List scanning
val for_all : ('a -> bool) -> 'a list -> bool

for_all p [a1; ...; an] checks if all elements of the list satisfy the predicate
p. That is, it returns (p a1) && (p a2) && ... && (p an).

val exists : ('a -> bool) -> 'a list -> bool

exists p [a1; ...; an] checks if at least one element of the list satisfies the
predicate p. That is, it returns (p a1) || (p a2) || ... || (p an).

val for_all2 : ('a -> 'b -> bool) -> 'a list -> 'b list -> bool

Same as List.for_all, but for a two-argument predicate. Raise
Invalid_argument if the two lists are determined to have different lengths.

val exists2 : ('a -> 'b -> bool) -> 'a list -> 'b list -> bool

Same as List.exists, but for a two-argument predicate. Raise
Invalid_argument if the two lists are determined to have different lengths.

val mem : 'a -> 'a list -> bool

mem a l is true if and only if a is equal to an element of l.

val memq : 'a -> 'a list -> bool

Same as List.mem, but uses physical equality instead of structural equality to
compare list elements.

List searching
val find : ('a -> bool) -> 'a list -> 'a

find p l returns the first element of the list l that satisfies the predicate p.
Raise Not_found if there is no value that satisfies p in the list l.

val find_opt : ('a -> bool) -> 'a list -> 'a option

find_opt p l returns the first element of the list l that satisfies the predicate p,
or None if there is no value that satisfies p in the list l.
Since 4.05

val filter : ('a -> bool) -> 'a list -> 'a list



17.12.2018 List

https://caml.inria.fr/pub/docs/manual-ocaml/libref/List.html 4/5

filter p l returns all the elements of the list l that satisfy the predicate p. The
order of the elements in the input list is preserved.

val find_all : ('a -> bool) -> 'a list -> 'a list

find_all is another name for List.filter.

val partition : ('a -> bool) -> 'a list -> 'a list * 'a list

partition p l returns a pair of lists (l1, l2), where l1 is the list of all the
elements of l that satisfy the predicate p, and l2 is the list of all the elements of
l that do not satisfy p. The order of the elements in the input list is preserved.

Association lists
val assoc : 'a -> ('a * 'b) list -> 'b

assoc a l returns the value associated with key a in the list of pairs l. That is,
assoc a [ ...; (a,b); ...] = b if (a,b) is the leftmost binding of a in list l.
Raise Not_found if there is no value associated with a in the list l.

val assoc_opt : 'a -> ('a * 'b) list -> 'b option

assoc_opt a l returns the value associated with key a in the list of pairs l. That
is, assoc_opt a [ ...; (a,b); ...] = b if (a,b) is the leftmost binding of a in
list l. Returns None if there is no value associated with a in the list l.
Since 4.05

val assq : 'a -> ('a * 'b) list -> 'b

Same as List.assoc, but uses physical equality instead of structural equality to
compare keys.

val assq_opt : 'a -> ('a * 'b) list -> 'b option

Same as List.assoc_opt, but uses physical equality instead of structural
equality to compare keys.
Since 4.05

val mem_assoc : 'a -> ('a * 'b) list -> bool

Same as List.assoc, but simply return true if a binding exists, and false if no
bindings exist for the given key.

val mem_assq : 'a -> ('a * 'b) list -> bool

Same as List.mem_assoc, but uses physical equality instead of structural
equality to compare keys.

val remove_assoc : 'a -> ('a * 'b) list -> ('a * 'b) list

remove_assoc a l returns the list of pairs l without the first pair with key a, if
any. Not tail-recursive.

val remove_assq : 'a -> ('a * 'b) list -> ('a * 'b) list

Same as List.remove_assoc, but uses physical equality instead of structural
equality to compare keys. Not tail-recursive.

Lists of pairs
val split : ('a * 'b) list -> 'a list * 'b list

Transform a list of pairs into a pair of lists: split [(a1,b1); ...; (an,bn)] is
([a1; ...; an], [b1; ...; bn]). Not tail-recursive.

val combine : 'a list -> 'b list -> ('a * 'b) list



17.12.2018 List

https://caml.inria.fr/pub/docs/manual-ocaml/libref/List.html 5/5

Transform a pair of lists into a list of pairs:
combine [a1; ...; an] [b1; ...; bn] is [(a1,b1); ...; (an,bn)]. Raise
Invalid_argument if the two lists have different lengths. Not tail-recursive.

Sorting
val sort : ('a -> 'a -> int) -> 'a list -> 'a list

Sort a list in increasing order according to a comparison function. The
comparison function must return 0 if its arguments compare as equal, a positive
integer if the first is greater, and a negative integer if the first is smaller (see
Array.sort for a complete specification). For example, compare is a suitable
comparison function. The resulting list is sorted in increasing order. List.sort
is guaranteed to run in constant heap space (in addition to the size of the result
list) and logarithmic stack space.

The current implementation uses Merge Sort. It runs in constant heap space and
logarithmic stack space.

val stable_sort : ('a -> 'a -> int) -> 'a list -> 'a list

Same as List.sort, but the sorting algorithm is guaranteed to be stable (i.e.
elements that compare equal are kept in their original order) .

The current implementation uses Merge Sort. It runs in constant heap space and
logarithmic stack space.

val fast_sort : ('a -> 'a -> int) -> 'a list -> 'a list

Same as List.sort or List.stable_sort, whichever is faster on typical input.

val sort_uniq : ('a -> 'a -> int) -> 'a list -> 'a list

Same as List.sort, but also remove duplicates.
Since 4.02.0

val merge : ('a -> 'a -> int) -> 'a list -> 'a list -> 'a list

Merge two lists: Assuming that l1 and l2 are sorted according to the
comparison function cmp, merge cmp l1 l2 will return a sorted list containing all
the elements of l1 and l2. If several elements compare equal, the elements of l1
will be before the elements of l2. Not tail-recursive (sum of the lengths of the
arguments).

Iterators

val to_seq : 'a list -> 'a Seq.t

Iterate on the list
Since 4.07

val of_seq : 'a Seq.t -> 'a list

Create a list from the iterator
Since 4.07

https://caml.inria.fr/pub/docs/manual-ocaml/libref/Pervasives.html#VALcompare
https://caml.inria.fr/pub/docs/manual-ocaml/libref/Seq.html#TYPEt
https://caml.inria.fr/pub/docs/manual-ocaml/libref/Seq.html#TYPEt

