17.12.2018

Previous Up

Map.S

Module type Map.S

module type S = sig .. end

Output signature of the functor Map . Make.

type key

The type of the map keys.

type +'a t

The type of maps from type key to type 'a.

val empty : 'a t

The empty map.

val is_empty : 'a t -> bool

Test whether a map is empty or not.

val mem : key -> 'a t -> bool

mem x mreturns true if m contains a binding for x, and false otherwise.

val add : key -> 'a -> 'at -> 'a t

add x y mreturns a map containing the same bindings as m, plus a binding of x
to y. If x was already bound in m to a value that is physically equal to y, m is
returned unchanged (the result of the function is then physically equal to m).
Otherwise, the previous binding of x in m disappears.

Before 4.03 Physical equality was not ensured.

val update : key -> ('a option -> 'a option) -> 'at -> 'a t

update x f mreturns a map containing the same bindings as m, except for the
binding of x. Depending on the value of y where y is f (find_opt x m), the
binding of x is added, removed or updated. If y is None, the binding is removed
if it exists; otherwise, if y is Some z then x is associated to z in the resulting
map. If x was already bound in m to a value that is physically equal to z, m is
returned unchanged (the result of the function is then physically equal to m).
Since 4.06.0

val singleton : key -> 'a -> 'a t

singleton x y returns the one-element map that contains a binding y for x.
Since 3.12.0

val remove : key -> 'a t -> 'a t

remove x mreturns a map containing the same bindings as m, except for x which
is unbound in the returned map. If x was not in m, m is returned unchanged (the
result of the function is then physically equal to m).

Before 4.03 Physical equality was not ensured.

val merge : (key -> 'a option -> 'b option -> 'c option) ->

'at->'bt->"'ct

merge f m1 m2 computes a map whose keys is a subset of keys of m1 and of m2.
The presence of each such binding, and the corresponding value, is determined
with the function f. In terms of the find_opt operation, we have

find_opt x (merge f ml m2) = f (find_opt x ml) (find_opt x m2) for any
key x, provided that f None None = None.

Since 3.12.0

val union : (key -> 'a -> "a -> 'a option) ->

'at->'"at->'at

https://caml.inria.fr/pub/docs/manual-ocaml/libref/Map.S.html

1/4


https://caml.inria.fr/pub/docs/manual-ocaml/libref/type_Map.S.html
https://caml.inria.fr/pub/docs/manual-ocaml/libref/Map.S.html
https://caml.inria.fr/pub/docs/manual-ocaml/libref/Map.Make.html
https://caml.inria.fr/pub/docs/manual-ocaml/libref/Map.OrderedType.html
https://caml.inria.fr/pub/docs/manual-ocaml/libref/Map.html

17.12.2018

val

val

val

val

val

val

val

val

val

val

Map.S
union f m1l m2 computes a map whose keys is the union of keys of m1 and of m2.
When the same binding is defined in both arguments, the function f is used to
combine them. This is a special case of merge: union f m1 m2 is equivalent to
merge f' ml m2, where

e f' None None = None

e f' (Some v) None = Some v

e f' None (Some v) = Some v

e f' (Some v1) (Some v2) = f vl v2

Since 4.03.0

compare : ('a -> 'a -> int) -> 'a t -> 'a t -> int
Total ordering between maps. The first argument is a total ordering used to
compare data associated with equal keys in the two maps.

equal : ('a -> 'a -> bool) -> 'at -> 'at -> bool
equal cmp ml m2 tests whether the maps m1 and m2 are equal, that is, contain

equal keys and associate them with equal data. cmp is the equality predicate
used to compare the data associated with the keys.

iter : (key -> 'a -> unit) -> 'a t -> unit
iter f mapplies f to all bindings in map m. f receives the key as first argument,
and the associated value as second argument. The bindings are passed to f in
increasing order with respect to the ordering over the type of the keys.

fold : (key -> 'a -> 'b -> 'b) -> "at -> 'b -> 'b

fold £ m a computes (f kN dN ... (f k1 d1 a)...), where k1l ... kN are the
keys of all bindings in m (in increasing order), and d1 ... dN are the associated
data.

for_all : (key -> 'a -> bool) -> "a t -> bool
for_all p mchecks if all the bindings of the map satisfy the predicate p.
Since 3.12.0

exists : (key -> "a -> bool) -> 'a t -> bool
exists p mchecks if at least one binding of the map satisfies the predicate p.
Since 3.12.0

filter : (key -> "a -> bool) -> 'a t -> 'a t
filter p mreturns the map with all the bindings in m that satisfy predicate p. If
p satisfies every binding in m, m is returned unchanged (the result of the function
is then physically equal to m)
Before 4.03 Physical equality was not ensured.
Since 3.12.0

partition : (key -> 'a -> bool) -> 'at -> 'at * 'at
partition p mreturns a pair of maps (m1, m2), where m1 contains all the
bindings of s that satisfy the predicate p, and m2 is the map with all the bindings
of s that do not satisfy p.
Since 3.12.0

cardinal : 'a t -> int
Return the number of bindings of a map.
Since 3.12.0

bindings : 'a t -> (key * 'a) list
Return the list of all bindings of the given map. The returned list is sorted in
increasing order with respect to the ordering ord. compare, where ord is the
argument given to Map.Make.

https://caml.inria.fr/pub/docs/manual-ocaml/libref/Map.S.html

2/4


https://caml.inria.fr/pub/docs/manual-ocaml/libref/Map.Make.html

17.12.2018

val

val

val

val

val

val

val

val

val

val

val

Map.S
Since 3.12.0

min_binding : 'a t -> key * 'a
Return the smallest binding of the given map (with respect to the ord. compare

ordering), or raise Not_found if the map is empty.
Since 3.12.0

min_binding opt : 'a t -> (key * 'a) option
Return the smallest binding of the given map (with respect to the ord. compare

ordering), or None if the map is empty.
Since 4.05

max_binding : 'a t -> key * 'a
Same as Map.S.min_binding, but returns the largest binding of the given map.
Since 3.12.0

max_binding opt : 'a t -> (key * 'a) option
Same as Map.S.min_binding_opt, but returns the largest binding of the given
map.
Since 4.05

choose : 'a t -> key * 'a

Return one binding of the given map, or raise Not_found if the map is empty.
Which binding is chosen is unspecified, but equal bindings will be chosen for
equal maps.

Since 3.12.0

choose_opt : 'a t -> (key * 'a) option
Return one binding of the given map, or None if the map is empty. Which
binding is chosen is unspecified, but equal bindings will be chosen for equal
maps.
Since 4.05

split : key -> 'a t -> 'a t * 'a option * 'a t
split x mreturns a triple (1, data, r), where 1 is the map with all the

bindings of m whose key is strictly less than x; r is the map with all the bindings
of m whose key is strictly greater than x; data is None if m contains no binding for

x, or Some v if m binds v to x.
Since 3.12.0

find : key -> 'a t -> 'a
find x mreturns the current binding of x in m, or raises Not_found if no such
binding exists.

find_opt : key -> 'a t -> 'a option
find_opt x mreturns Some v if the current binding of x in m is v, or None if no

such binding exists.
Since 4.05

find_first : (key -> bool) -> 'a t -> key * 'a
find_first f m, where f is a monotonically increasing function, returns the
binding of m with the lowest key k such that £ k, or raises Not_found if no such
key exists.

For example, find_first (fun k -> Ord.compare k x >= @) m will return the
first binding k, v of m where ord.compare k x >= o (intuitively: k >= x), or
raise Not_found if x is greater than any element of m.

Since 4.05

find_first_opt : (key -> bool) -> "a t -> (key * 'a) option

https://caml.inria.fr/pub/docs/manual-ocaml/libref/Map.S.html

3/4



17.12.2018

Map.S

find_first_opt f m, where f is a monotonically increasing function, returns an
option containing the binding of m with the lowest key k such that f k, or None if
no such key exists.

Since 4.05

val find_last : (key -> bool) -> 'a t -> key * 'a
find_last f m, where f is a monotonically decreasing function, returns the
binding of m with the highest key k such that f k, or raises Not_found if no such

key exists.
Since 4.05

val find_last opt : (key -> bool) -> 'a t -> (key * "a) option
find_last_opt f m, where f is a monotonically decreasing function, returns an
option containing the binding of m with the highest key k such that £ k, or None
if no such key exists.
Since 4.05

val map : ('a -> 'b) -> 'at -> 'bt
map f mreturns a map with same domain as m, where the associated value a of
all bindings of m has been replaced by the result of the application of f to a. The
bindings are passed to f in increasing order with respect to the ordering over the
type of the keys.

val mapi : (key -> 'a -> 'b) -> 'at -> 'b t
Same as Map.S.map, but the function receives as arguments both the key and the
associated value for each binding of the map.

Iterators

val to_seq : 'a t -> (key * 'a) Seq.t
Iterate on the whole map, in ascending order
Since 4.07

val to_seq_from : key -> 'a t -> (key * 'a) Seq.t
to_seq_from k miterates on a subset of the bindings of m, in ascending order,

from key k or above.
Since 4.07

val add_seq : (key * 'a) Seq.t -> 'a t -> 'a t
Add the given bindings to the map, in order.
Since 4.07

val of_seq : (key * 'a) Seq.t -> 'a t
Build a map from the given bindings
Since 4.07

https://caml.inria.fr/pub/docs/manual-ocaml/libref/Map.S.html

4/4


https://caml.inria.fr/pub/docs/manual-ocaml/libref/Seq.html#TYPEt
https://caml.inria.fr/pub/docs/manual-ocaml/libref/Seq.html#TYPEt
https://caml.inria.fr/pub/docs/manual-ocaml/libref/Seq.html#TYPEt
https://caml.inria.fr/pub/docs/manual-ocaml/libref/Seq.html#TYPEt

