17.12.2018 List

Previous Up Next Mod u Ie LiSt

module List: sig .. end
List operations.

Some functions are flagged as not tail-recursive. A tail-recursive function uses
constant stack space, while a non-tail-recursive function uses stack space
proportional to the length of its list argument, which can be a problem with very
long lists. When the function takes several list arguments, an approximate
formula giving stack usage (in some unspecified constant unit) is shown in
parentheses.

The above considerations can usually be ignored if your lists are not longer than
about 10000 elements.

val length : 'a list -> int
Return the length (number of elements) of the given list.

val compare_lengths : 'a list -> 'b list -> int
Compare the lengths of two lists. compare_lengths 11 12 is equivalent to
compare (length 11) (length 12), except that the computation stops after
itering on the shortest list.
Since 4.05.0

val compare_length_with : 'a list -> int -> int
Compare the length of a list to an integer. compare_length_with 1 nis
equivalent to compare (length 1) n, except that the computation stops after at

most n iterations on the list.
Since 4.05.0

val cons : 'a -> 'a list -> 'a list
cons X Xs1SX :: Xs
Since 4.03.0

val hd : 'a list -> 'a

Return the first element of the given list. Raise Failure "hd" if the list is empty.

val t1 : 'a list -> 'a list
Return the given list without its first element. Raise Failure "t1" if the list is
empty.

val nth : 'a list -> int -> 'a
Return the n-th element of the given list. The first element (head of the list) is at

position 0. Raise Failure "nth" if the list is too short. Raise
Invalid_argument "List.nth" if n is negative.

val nth_opt : 'a list -> int -> 'a option
Return the n-th element of the given list. The first element (head of the list) is at
position 0. Return None if the list is too short. Raise

Invalid_argument "List.nth" if n is negative.
Since 4.05

val rev : 'a list -> 'a list
List reversal.
val init : int -> (int -> 'a) -> 'a list
List.init len fisf @; f 1; ...; f (len-1), evaluated left to right.

https://caml.inria.fr/pub/docs/manual-ocaml/libref/List.html 1/5

https://caml.inria.fr/pub/docs/manual-ocaml/libref/type_List.html
https://caml.inria.fr/pub/docs/manual-ocaml/libref/List.html
https://caml.inria.fr/pub/docs/manual-ocaml/libref/Lexing.html
https://caml.inria.fr/pub/docs/manual-ocaml/libref/index.html
https://caml.inria.fr/pub/docs/manual-ocaml/libref/ListLabels.html

17.12.2018

val

val

val

val

List
Since 4.06.0
Raises Invalid_argument if len <0.
append : ‘'a list -> 'a list -> 'a list
Concatenate two lists. Same as the infix operator @. Not tail-recursive (length of
the first argument).
rev_append : 'a list -> 'a list -> 'a list
List.rev_append 11 12 reverses 11 and concatenates it to 12. This is equivalent
to List.rev 11 @ 12, but rev_append is tail-recursive and more efficient.
concat : 'a list list -> 'a list
Concatenate a list of lists. The elements of the argument are all concatenated
together (in the same order) to give the result. Not tail-recursive (length of the
argument + length of the longest sub-list).
flatten : 'a list list -> 'a list

An alias for concat.

Ilterators

val

val

val

val

val

val

val

iter : ('a -> unit) -> 'a list -> unit
List.iter f [al; ...; an] applies function f inturnto al; ...; an.lItis
equivalent to begin f al; f a2; ...; f an; () end.

iteri : (int -> 'a -> unit) -> 'a list -> unit
Same as List.iter, but the function is applied to the index of the element as

first argument (counting from 0), and the element itself as second argument.
Since 4.00.0

map : ('a -> 'b) -> 'a list -> 'b list
List.map f [al; ...; an] applies function f to a1, ..., an, and builds the list
[f al; ...; f an] with the results returned by f. Not tail-recursive.

mapi : (int -> 'a -> 'b) -> 'a list -> 'b list
Same as List.map, but the function is applied to the index of the element as first
argument (counting from 0), and the element itself as second argument. Not

tail-recursive.
Since 4.00.0

rev_map : ('a -> 'b) -> 'a list -> 'b list
List.rev_map f 1 gives the same result as List.rev (List.map f 1), butis tail-
recursive and more efficient.

fold_left : ('a -> 'b -> "a) -> "a -> 'b list -> 'a
List.fold_left f a [bl; ...; bn]isf (... (f (f a bl) b2) ...) bn.
fold_right : ('a -> 'b -> 'b) -> "a list -> 'b -> 'b

List.fold right f [al; ...; an] bisf al (f a2 (... (f an b) ...)).Not
tail-recursive.

lterators on two lists

val

iter2 : ('a -> 'b -> unit) -> 'a list -> 'b list -> unit
List.iter2 f [al; ...; an] [b1l; ...; bn] callsin turn
f al bl; ...; f an bn.Raise Invalid_argument if the two lists are determined
to have different lengths.

https://caml.inria.fr/pub/docs/manual-ocaml/libref/List.html 2/5

17.12.2018

val

val

val

val

List
map2 : ('a -> 'b -> 'c) -> 'a list -> 'b list -> 'c list
List.map2 f [al; ...; an] [bl; ...; bn]is[f al bl; ...; f an bn]. Raise
Invalid_argument if the two lists are determined to have different lengths. Not
tail-recursive.

rev_map2 : ('a -> 'b -> 'c) -> 'a list -> 'b list -> 'c list
List.rev_map2 f 11 12 gives the same result as List.rev (List.map2 f 11 12),
but is tail-recursive and more efficient.

fold_left2 : ('a -> 'b -> 'c -> "a) -> 'a -> 'b list -> 'c list -> 'a
List.fold left2 f a [bl; ...; bn] [cl; ...; cn]is
f (... (f (f ablcl) b2 c2) ...) bn cn.Raise Invalid_argument if the two
lists are determined to have different lengths.

fold_right2 : ('a -> 'b -> 'c -> 'c) -> 'a list -> 'b list -> 'c -> 'c
List.fold right2 f [al; ...; an] [bl; ...; bn] cis
f al bl (f a2 b2 (... (f an bn ¢) ...)).Raise Invalid_argument if the two
lists are determined to have different lengths. Not tail-recursive.

List scanning

val

val

val

val

val

val

for_all : ('a -> bool) -> 'a list -> bool
for_all p [al; ...; an] checks if all elements of the list satisfy the predicate
p. That is, it returns (p a1) & (p a2) && ... && (p an).

exists : ('a -> bool) -> "a list -> bool
exists p [al; ...; an] checks if at least one element of the list satisfies the
predicate p. That is, it returns (p a1) || (p a2) || ... || (p an).

for_all2 : ('a -> 'b -> bool) -> "a list -> 'b list -> bool
Same as List.for_all, but for a two-argument predicate. Raise
Invalid_argument if the two lists are determined to have different lengths.

exists2 : ('a -> 'b -> bool) -> 'a list -> 'b list -> bool
Same as List.exists, but for a two-argument predicate. Raise
Invalid_argument if the two lists are determined to have different lengths.

mem : 'a -> 'a list -> bool
mem a 1 is true if and only if a is equal to an element of 1.

memq : 'a -> 'a list -> bool
Same as List.mem, but uses physical equality instead of structural equality to
compare list elements.

List searching

val

val

val

find : ('a -> bool) -> 'a list -> 'a
find p 1 returns the first element of the list 1 that satisfies the predicate p.
Raise Not_found if there is no value that satisfies p in the list 1.

find_opt : ('a -> bool) -> 'a list -> 'a option
find_opt p 1 returns the first element of the list 1 that satisfies the predicate p,

or None if there is no value that satisfies p in the list 1.
Since 4.05

filter : ('a -> bool) -> 'a list -> 'a list

https://caml.inria.fr/pub/docs/manual-ocaml/libref/List.html

3/5

17.12.2018 List

filter p 1 returns all the elements of the list 1 that satisfy the predicate p. The
order of the elements in the input list is preserved.

val find_all : ('a -> bool) -> 'a list -> 'a list

find_all is another name for List.filter.

val partition : ('a -> bool) -> 'a list -> 'a list * 'a list
partition p 1 returns a pair of lists (11, 12), where 11 is the list of all the
elements of 1 that satisfy the predicate p, and 12 is the list of all the elements of
1 that do not satisfy p. The order of the elements in the input list is preserved.

Association lists

val assoc : 'a -> ('a * 'b) list -> 'b
assoc a 1 returns the value associated with key a in the list of pairs 1. That is,
assoc a [...; (a,b); ...] = bif (a,b) is the leftmost binding of a in list 1.
Raise Not_found if there is no value associated with a in the list 1.

val assoc_opt : 'a -> ('a * 'b) list -> 'b option
assoc_opt a 1 returns the value associated with key a in the list of pairs 1. That
is, assoc_opt a [...; (a,b); ...] = bif (a,b) is the leftmost binding of a in
list 1. Returns None if there is no value associated with a in the list 1.
Since 4.05

val assq : 'a -> ('a * 'b) list -> 'b

Same as List.assoc, but uses physical equality instead of structural equality to
compare keys.

val assq opt : 'a -> ('a * 'b) list -> 'b option
Same as List.assoc_opt, but uses physical equality instead of structural

equality to compare keys.
Since 4.05

val mem_assoc : 'a -> ('a * 'b) list -> bool
Same as List.assoc, but simply return true if a binding exists, and false if no
bindings exist for the given key.

val mem_assq : 'a -> ('a * 'b) list -> bool
Same as List.mem_assoc, but uses physical equality instead of structural
equality to compare keys.

val remove_assoc : 'a -> ('a * 'b) list -> ('a * 'b) list
remove_assoc a 1 returns the list of pairs 1 without the first pair with key a, if
any. Not tail-recursive.

val remove_assq : 'a -> ('a * 'b) list -> ('a * 'b) list
Same as List.remove_assoc, but uses physical equality instead of structural
equality to compare keys. Not tail-recursive.

Lists of pairs

val split : ('a * 'b) list -> 'a list * 'b list

Transform a list of pairs into a pair of lists: split [(al,bl); ...; (an,bn)]is
([al; ...; an], [b1l; ...; bn]). Not tail-recursive.
val combine : 'a list -> 'b list -> ('a * 'b) list

https://caml.inria.fr/pub/docs/manual-ocaml/libref/List.html

4/5

17.12.2018 List
Transform a pair of lists into a list of pairs:
combine [al; ...; an] [bl; ...; bn]is[(al,bl); ...; (an,bn)]. Raise
Invalid_argument if the two lists have different lengths. Not tail-recursive.

Sorting

val sort : ('a -> 'a -> int) -> 'a list -> 'a list
Sort a list in increasing order according to a comparison function. The
comparison function must return 0 if its arguments compare as equal, a positive
integer if the first is greater, and a negative integer if the first is smaller (see
Array.sort for a complete specification). For example, compare is a suitable
comparison function. The resulting list is sorted in increasing order. List.sort
is guaranteed to run in constant heap space (in addition to the size of the result
list) and logarithmic stack space.

The current implementation uses Merge Sort. It runs in constant heap space and
logarithmic stack space.

val stable_sort : ('a -> 'a -> int) -> 'a list -> 'a list
Same as List.sort, but the sorting algorithm is guaranteed to be stable (i.e.
elements that compare equal are kept in their original order) .

The current implementation uses Merge Sort. It runs in constant heap space and
logarithmic stack space.

val fast_sort : ('a -> 'a -> int) -> 'a list -> 'a list
Same as List.sort or List.stable_sort, whichever is faster on typical input.

val sort_uniq : ('a -> 'a -> int) -> 'a list -> 'a list
Same as List.sort, but also remove duplicates.
Since 4.02.0

val merge : ('a -> 'a -> int) -> 'a list -> 'a list -> 'a list
Merge two lists: Assuming that 11 and 12 are sorted according to the
comparison function cmp, merge cmp 11 12 will return a sorted list containing all
the elements of 11 and 12. If several elements compare equal, the elements of 11
will be before the elements of 12. Not tail-recursive (sum of the lengths of the
arguments).

Iterators

val to_seq : 'a list -> 'a Seq.t
Iterate on the list
Since 4.07

val of _seq : 'a Seq.t -> 'a list
Create a list from the iterator
Since 4.07

https://caml.inria.fr/pub/docs/manual-ocaml/libref/List.html 5/5

https://caml.inria.fr/pub/docs/manual-ocaml/libref/Pervasives.html#VALcompare
https://caml.inria.fr/pub/docs/manual-ocaml/libref/Seq.html#TYPEt
https://caml.inria.fr/pub/docs/manual-ocaml/libref/Seq.html#TYPEt

